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Abstract
The negative effects of roads on wildlife populations are a growing concern. Movement corridors and road-kill data are
typically used to prioritize road segments for mitigation measures. Some research suggests that locations where animals move
across roads following corridors coincide with locations where they are often killed by vehicles. Other research indicates that
corridors and road-kill rarely occur in the same locations. We compared movement corridor and road mortality models as
means of prioritizing road segments for mitigation for five species of felids in Brazil: tiger cats (Leopardus tigrinus and
Leopardus guttulus were analyzed together), ocelot (Leopardus pardalis), jaguarundi (Herpailurus yagouaroundi), and puma
(Puma concolor). We used occurrence data for each species and applied circuit theory to identify potential movement corridors
crossed by roads. We used road-kill records for each species and applied maximum entropy to determine where mortality was
most likely to occur on roads. Our findings suggest that movement corridors and high road mortality are not spatially
associated. We suggest that differences in the behavioral state of the individuals in the species occurrence and road-kill data
may explain these results. We recommend that the road segments for which the results from the two methods agree (~5300 km
for all studied species combined at 95th percentile) should be high-priority candidates for mitigation together with road
segments identified by at least one method in areas where felids occur in low population densities or are threatened by isolation
effects.
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Introduction

Roads are a growing threat affecting many wildlife popula-
tions worldwide (Laurance et al. 2009). However, mitigation
measures have often not been well planned and not properly
installed (Laurance et al. 2014; Huijser et al. 2015). This is
particularly critical in countries throughout the tropics, where
rich biodiversity of high global conservation interest still
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remains, but many new road projects are being planned for
the next 30 years (Alamgir et al. 2017; Ascensão et al. 2018).

Prioritizing road segments for mitigating the negative
effects on wildlife should take into account areas of addi-
tional mortality due to collisions with vehicles and areas of
potential habitat and movement corridors that facilitate gene
flow and ultimately the genetic diversity of populations
(Clevenger and Ford 2010; Zeller et al. 2018). Thus, it is
recommended to consider road segments where the poten-
tial for wildlife movement and road mortality are high (e.g.,
Clevenger 2012; Colchero et al. 2011; Teixeira et al. 2013;
Rytwinski et al. 2016; Mohammadi et al. 2018). Never-
theless, it is not clear to what degree road segments iden-
tified by the two approaches are spatially associated. Some
studies suggest that areas of high movement coincide with
areas of high road mortality (Girardet et al. 2015; Kang
et al. 2016), while others found little overlap between cor-
ridors and high road-kill locations (McClure and Ament
2014; Boyle et al. 2017; Laliberté and St-Laurent 2020).

Felids face threats in many regions of the world and roads
are a growing concern for many species (IUCN 2020).
Although in Brazil there are plans for road network
upgrading and expansion (Bager et al. 2015), the relationship
between movement corridors and road mortality in this
region has not been examined (e.g., Rabinowitz and Zeller
2010; Silva et al. 2014). Movement corridor studies have
focused on few species (e.g., puma and jaguar Panthera
onca) and regions (e.g., Silveira et al. 2014; Castilho et al.
2015; Diniz et al. 2017), while road mortality surveys have
been conducted in several regions in Brazil (Cunha et al.
2010; Hegel et al. 2012; Souza et al. 2014). To our knowl-
edge, studies merging models of felid movement corridors
and road mortality with the aim of identifying mitigation
areas have not been conducted. All felid species in Brazil
except the ocelot Leopardus pardalis are locally endangered
and therefore important target species for conservation at
local and regional scales (Brasil 2014). These species are
facing many impacts such as habitat loss and fragmentation
and cultural and retaliatory hunting (Almeida et al. 2013).
Roads are important threats for many felid populations, in
particular due to mortality; efforts for effective road mitiga-
tion are therefore crucial (Srbek-Araujo et al. 2015).

Our aim was to clarify the utility of movement corridors
and road mortality in identifying locations for mitigation
measures to reduce road-kill occurrence and restore habitat
connectivity. We compared models that identify movement
corridors and road mortality to predict road segments for
mitigation for five felid species in Brazil. We used circuit
theory to identify locations of potential movement corridors
across roads and maximum entropy principles to determine
road segments with probability of high mortality. We ana-
lyzed occurrence data and road-kill records of five species
of felids: tiger cats (Leopardus tigrinus and Leopardus

guttulus were analyzed together), ocelot, jaguarundi (Her-
pailurus yagouaroundi), and puma.

Material and Methods

Study Area

The study area encompasses the ranges of the five felid
species in Brazil according to data from the Centro Nacional
de Pesquisa e Conservação de Mamíferos Carnívoros/
Instituto Chico Mendes de Conservação da Biodiversidade
(CENAP/ICMBio, Fig. S1). The two tiger cats were ana-
lyzed together (their ranges were merged) because much of
the data obtained were collected prior to the classification
into two distinct species (L. tigrinus and L. guttulus, Trigo
et al. 2013) and there are still uncertainties about their
ranges’ limits (Silva et al. unpublished data). The range of
each of these species covers almost the entire Brazil terri-
tory (Fig. S1). We chose to make use of available data that
have been compiled across the species ranges and to ana-
lyze how felids spatially interact with roads in Brazil, in
order to provide a first overview of the potential impact of
roads on felids and the need for mitigation. About 65% of
Brazil’s territory (~5.5 million km2) is covered by native
vegetation (GlobCover Land Cover Maps V2.3 2009). The
Brazilian Institute of Geography and Statistics (IBGE 2018)
classifies vegetation in six major continental biomes:
Amazon, Caatinga, Pantanal, Cerrado, Atlantic Forest, and
Pampa (Fig. S2). Almost all of these biomes are under some
degree of threat as a result of anthropogenic disturbances
(Ribeiro et al. 2009). Average human population density in
Brazil is 24.5 inhabitants/km2 (IBGE 2018) and the current
road network comprises more than 1.7 million km of paved
and unpaved roads (CNT 2014), i.e., ca. 0.2 km/km2.

Potential Movement Corridors Crossed by Roads

We applied circuit theory to identify potential movement
corridors (de la Torre et al. 2017) using software gflow
(Leonard et al. 2017). The landscape is analyzed as a net-
work of electrical nodes connected by resistors and serves
as an analog for habitats connected by movement (McRae
et al. 2008). As inputs, the models use resistance surfaces to
represent the degree to which the landscape facilitates or
impedes individual movement and source and destination
patches (called focal nodes) among which connectivity is
measured. The output provides maps of movement prob-
abilities of individuals moving through the landscape
(hereafter called current density, see McRae et al. 2008).

Resistance surfaces were obtained from habitat suit-
ability maps. We created a habitat suitability map for each
species’ range in MaxEnt 3.3.3 software (Phillips and
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Dudík 2008), which is widely used to predict species dis-
tributions (Phillips et al. 2006). Each model used individual
locations as response variables obtained from collaborating
researchers who lodged occurrence records on a database of
CENAP/ICMBio. Specific information about the date of
these occurrence records was not available, but they were
all from within the last 20 years (Morato RG, personal
communication). Despite MaxEnt’s ability to account for
irregularly sampled presence-only data (Phillips et al.
2006), the number of records was rarefied to reduce the
geographic bias of data collection and to avoid overfitting.
This method has been shown to improve the performance of
species distribution models (Boria et al. 2014) and ranked
better when compared to other methods of correcting
sampling bias (Fourcade et al. 2014). We removed neigh-
boring occurrences < 10 km apart using the “Spatially rarefy
occurrence data for SDMs (Species Distribution Models)”
tool of SDMtoolbox (Brown 2014). This distance was
chosen based on the assumption that locations separated by
10 km exhibit enough variation to be considered spatially
independent (Boria et al. 2014). After correction, we used
82 locations for tiger cats, 171 for ocelot, 106 for jaguar-
undi, and 606 for puma (Fig. S1).

We used the following environmental data as explana-
tory variables that are commonly associated with felid
occurrence: elevation, land cover, habitat connectivity
(applying the effective mesh size only for patches of
vegetation types that are considered suitable for maintaining

each species’ ecological needs, Text S1), streams, protected
areas, pasture, and settlements/urban areas (Rabinowitz and
Zeller 2010; Angelieri et al. 2016; Giordano 2016, Table 1
and Text S1). We used the following land-cover classes of
GlobCover Land Cover Maps (V2.3, 2009): forest (native
forest with trees > 5 m), woodland (native forest with trees
< 5 m), cropland, mosaic cropland/native vegetation, and
flooded areas (Table 1 and Text S1). All variables were
calculated along a regular grid with cells of 1 km2. To avoid
including highly correlated environmental variables, we
tested for multicollinearity. Since none of the variables were
highly correlated (r ≥ 0.8, Behdarvand et al. 2014) all were
included in the models (Pearson’s correlation coefficient
ranged from −4.3e−05 to 0.74, and all were ≤ 0.65, except
for forest and puma’s habitat connectivity [r= 0.7] and
pasture and settlements/urban areas [r= 0.74]).

Habitat suitability models were created with the default
values for regularization multiplier, maximum number of
background points, maximum iterations, and convergence
threshold (Behdarvand et al. 2014). For each model, 70% of
the data were used for training and 30% for testing (Silva
et al. 2017). Logistic output maps with values ranging from
0 (no probability of occurrence) to 1 (100% probability of
occurrence) were generated for each species. Models were
evaluated by the area-under-receiver-operating character-
istic curve (AUC), which measures the ability of model
predictions to discriminate a presence location from a ran-
domly chosen background point (Fourcade et al. 2014).

Table 1 Description of
explanatory variables used in the
habitat suitability modelsa and
road mortality likelihood
modelsb

Variable Description Source

Elevationa,b Average altitude (m) SRTM database:
http://www2.jpl.nasa.gov/
srtm

Foresta,b % of forest (native forest with trees > 5 m)

Woodlanda,b % of woodland (native vegetation—shrublands,
grasslands, savannas, and sparse vegetation—with
trees < 5 m)

Croplanda,b % of cropland (areas of agricultural cultivation) http://due.esrin.esa.int/

Mosaica,b % of mosaic (areas of cropland and native
vegetation blends)

Flooded areasa,b % of flooded areas (types of vegetation that are
permanently or temporarily flooded)

Habitat
Connectivitya,b

Effective mesh size (meff—details given in Text S1)

Streamsa,b Distance to the nearest stream (m) http://hidroweb.ana.gov.br

Protected areasa,b Distance to the nearest conservation unit (m) http://mapas.mma.gov.br

Pasturea,b Distance to the nearest pasture area (m) https://pastagem.org

Settlements/urbana,b Distance to the nearest settlement or urban area (m)

Road typeb Type of road (unpaved, two-lane paved, and three to
six-lane highways)

http://www.geofabrik.de/

Road lengthb Length of roads within the 1 km2 cell in km (all three
road types combined)
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Values of AUC > 0.7 indicate that a model has good per-
formance and high predictive success (Elith et al. 2006).

We then used the inverse of habitat suitability to create
resistance surfaces for each species separately (Ziółkowska
et al. 2016; Bond et al. 2017). The inverse of habitat suit-
ability was determined by applying the “Invert” tool of
Geomorphometry and Gradient Metrics Toolbox v. 2.0
(Evans et al. 2014). For each pixel of the habitat suitability
output map for a species, resistance value (R) was calculated
based on the following formula: R= ((x−max(x)) × (−1))
+min(x), where x is the value of habitat suitability for each
cell. Because placing nodes within the study area can bias
current density estimates due to artificial current saturation
effects, we created a buffer around the border of each
resistance surface (due to computer limitations for spatial
analysis, the buffer was ~2% of the species’ range width.
According to Koen et al. (2014), even narrow buffers can
improve current density estimates by removing bias caused
by node placement). We placed 100 randomly distributed
focal nodes within the buffer to conduct connectivity mod-
eling and later removed the buffer to minimize node place-
ment bias (Koen et al. 2014). We selected 100 nodes for each
species after examining the sensitivity of current saturation
with number of pairwise computations (Leonard et al. 2017).

From the resulting maps of potential movement corridors
from gflow (Leonard et al. 2017), we extracted only the
values of current that overlapped with the road network
within each species range, which resulted in a grid with cell
size of 1 × 1 km along the road network. This resolution has
been used in other studies (e.g., Grilo et al. 2015; Laliberté
and St-Laurent 2020) and can account for the surrounding
area beyond the road surface. All geographic analyses were
performed in ArcGIS 10.3.1 (ESRI 2015).

Road Mortality Likelihood

We modeled road mortality likelihood for each species in a
grid with cells of 1 × 1 km along the road network using
road-kill records as response variables and environmental

data as explanatory variables in Maxent 3.3.3 (Phillips and
Dudík 2008), which has been used to predict road mortality
for felids (Garrote et al. 2018; Schmidt et al. 2020). All
variables were calculated for each cell along the road net-
work (~392,000 km within Brazilian territory, estimated
based on a shapefile from OpenStreetMap (Geofabrik 2015;
Fig. S1)). We excluded roads from urban areas since these
felids tend not to use urban areas (Sunquist and Sunquist
2002). The number of cells with some road section in them
was ~428,000 for Brazil (see Table 2 for number of road
segments for each species’ range). Road-kill occurrence
data were obtained from two databases: (1) Sistema Urubu
—a citizen science initiative that uses a mobile based
application (http://cbee.ufla.br/portal/sistema_urubu/) to
record geo-referenced road-kill data and photographs (all
road-kill data provided by Sistema Urubu were validated by
the authors through the photographs), and (2) Grilo et al.
(2018)—a compilation of geo-referenced road-kill records
in Brazil. Information about collection date was not avail-
able for some records, but the majority were observed
between 2000 and 2017. We used the same method as
described in “Potential movement corridors crossed by
roads” to reduce the geographical bias associated with data
collection. We obtained 113 records for tiger cats, 52 for
ocelot, 110 for jaguarundi, and 70 for puma (Fig. S1),
which constituted independent datasets from occurrence
records used in habitat suitability models.

Model settings were the same as described for habitat
suitability models (in “Potential movement corridors cros-
sed by roads”). Logistic output maps with values ranging
from 0 (no probability of finding a road-kill in that road
segment) to 1 (100% probability of finding a road-kill) were
generated for each species. We used the same variables as
for the habitat suitability models and included road type
(unpaved, two-lane paved, and three to six-lane highways)
and road length (Table 1 and Text S1). The later variable
was included as a control variable, because 1 km2 cells did
not include the same length of road.

Table 2 Cohen’s Kappa coefficients (k) used to compare how often potential movement corridors and road mortality likelihood models
spatially agreed

>P95 >P90 >P80

Species Ts S1both S0both k S1both S0both k S1both S0both k

Tiger cats 366,450 1683 331,488 0.04* 5399 298,556 0.05* 16,478 236,345 0.03*

Ocelot 350,829 1449 317,194 0.03* 5249 285,911 0.05* 18,583 229,081 0.08*

Jaguarundi 343,849 902 310,365 2.59e−03 3251 278,331 −6.06e−03* 12,537 218,847 −2.21e−02*

Puma 333,024 1627 301,349 0.05* 5282 271,700 0.06* 16,905 216,717 0.07*

Ts= total number of road segments along each species range; S1both= number of road segments assigned a value of 1 by both methods; S0both=
number of road segments assigned a value of 0 by both methods (see Text S2)

*p value < 0.005
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Comparison of Movement Corridors and Road
Mortality Models

We compared potential movement corridors and road
mortality likelihood models assuming that road segments
with high values of current density represent movement
corridors crossed by roads (Laliberté and St-Laurent
2020; Zeller et al. 2020) and we used four com-
plementary analyses. First, for each species separately,
we compared the spatial locations of values above the
95th, 90th, and 80th percentiles of current and road
mortality likelihood. We chose these three thresholds to
consider three scenarios for road mitigation ranging from
a less conservative strategy, in which only 5% of road
segments with the highest values of current/road mor-
tality are considered for mitigation, to a more con-
servative one, in which 20% of the highest values of
current/road mortality are considered. For each method
separately, we assigned road segments with values above
the defined percentile of current/road mortality likelihood
a value of 1 and the remaining road network a value of 0.
We then used the unweighted Cohen’s kappa coefficient
(k, Cohen 1960; Boyle et al. 2017) to assess how often
results from the potential movement corridor models
spatially agreed with those from the road mortality
likelihood models, i.e., when both methods had assigned
a value of 1 (or 0) to certain road segments (see Text S2
for more details on how k was calculated). The maximum
value of the coefficient is 1 representing 100% agree-
ment. Second, for each species separately, we explored
generalized additive models (GAMs) in order to better
understand if current values had any effect (linear or
otherwise) on the relative change in road mortality like-
lihood. To parameterize the models, we used all the
values of current and road mortality likelihood extracted
from each cell of 1 km2 along the road network. Models
were fitted with a Gaussian distribution and we used a
cubic regression spline smoother and generalized cross-
validation (GCV) to estimate the optimal amount of
smoothing (Zuur et al. 2009). Adjusted r2, deviance
explained, and GCV scores were calculated. Third, to
explore the possible role of potential movement corridors
in road mortality, we created road mortality models in
MaxEnt again adding current along the road network as a
predictive variable. Fourth, to test whether current den-
sity is higher in road-kill locations than in locations
without road-kill (as would be expected if corridors
predicted road mortality), we used a t-test to compare
current density at road segments with road-kill records
with current density at random points without road-kill.
To calculate k, run the GAMs, and perform the t-tests, we
used packages “irr,” “mgcv,” and “stats,” respectively, in
R. 3.5.0 (R Core Team 2018).

Results

Movement Corridors

All models of habitat suitability had high support based on
AUC (AUC > 0.85; Table S1). The variables that best
explained habitat suitability were: low habitat connectivity
for tiger cats (with 22.7% contribution to the model),
proximity to protected areas for ocelots and pumas (24.9%
and 27.5%, respectively), and proximity to settlements and
urban areas for jaguarundi (31.3%, Table S1 and Fig. S3).

The total road lengths of segments above the 95th per-
centile of current were ~16,400 km inside tiger cats’ range,
~16,150 km for ocelot, ~15,500 km for jaguarundi, and
~17,000 km for puma. These were mainly distributed in
Amazonia (~46%) and Atlantic Forest (41%) for tiger cats,
Amazonia (~49%) and Atlantic Forest (~40%) for ocelot,
Amazonia (~50%) and Atlantic Forest (~34%) for jaguarundi,
and in Atlantic Forest (~79%) and Cerrado (~9%) for puma
(Fig. 1). Corresponding information for segments above the
90th and 80th percentiles is presented in Text S3 and Fig. S4.

Road Mortality

All road mortality models had high support based on AUC
values (AUC ≥ 0.85; Table S1). Wider roads (three to six
lanes) produced the highest relative contribution to
explaining road-kill occurrence for tiger cats (29.7%), ocelot
(46.8%), jaguarundi (50.4%), and puma (62.2%, Table S1
and Fig. S5). The second most important variable was
related to landscape. Low habitat connectivity contributed
with 12% for the ocelot model, low percentage of cropland
explained 9.3% for the jaguarundi model, and high habitat
connectivity contributed with 6.5% for puma model. For
tiger cats, proximity to settlements and urban areas was the
third most important variable in explaining road-kill (11%).

The total lengths of road segments above the percentile
95th of road mortality likelihood were ~24,700 km inside
tiger cats’ range, ~19,400 km for ocelot, ~20,700 km for
jaguarundi, and ~20,900 km for puma. These were mainly
distributed in Atlantic Forest (~76%) and Cerrado (~16%)
for tiger cats, Atlantic Forest (~42%) and Cerrado (~34%)
for ocelot, Atlantic Forest (~52%) and Cerrado (~30%) for
jaguarundi, and in Atlantic Forest (~50%) and Cerrado
(~32%) for puma (Fig. 1). Corresponding information for
segments above the 90th and 80th percentiles is presented in
Text S4 and Fig. S4.

Comparison of Movement Corridors and Road
Mortality

Cohen’s kappa coefficients indicated low levels of spatial
agreement between the two methods for all species and for
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the three scenarios (Table 2). Total road lengths for which
the two methods agreed (>95th percentile) were ~2250 km
for tiger cats, ~1600 km for ocelot, ~1100 km for jaguar-
undi, and ~2000 km for puma. For all species together,
these road segments represent a total of ~5300 km. In
contrast, the sum length of all road segments for all species,
for which at least one method indicated the need for miti-
gation comprised ~81,700 km for all species combined
(>95th percentile). The GAMs showed nonlinear relation-
ships between current and road mortality likelihood for all
species (Fig. 2 and Table S2). A positive relationship
between road mortality likelihood and current was found
only for tiger cats. We found only a small contribution of
current to explain road mortality (2% for tiger cats, 0.4% for
ocelot, 16% for jaguarundi, and 7.2% for puma, Table S3).

Also, current was not significantly different in road seg-
ments with road-kill and without road-kill (tiger cats: t=
−0.721, p= 0.471; ocelot: t=−1.536, p= 0.128, and
puma: t= 0.470, p= 0.639) except for jaguarundi for which
we found a higher current density in road segments without
road-kill (t= 2.785, p < 0.05, but see McShane et al. 2019).

Discussion

This is the first study comparing predicted movement cor-
ridors and road mortality to identify road sections for miti-
gation for felids in Brazil. All analyses lead to the same
conclusion: there is no spatial association between our
models of movement corridors and high road-kill likelihood.

Fig. 1 Road segments with values > 95th percentile (P95) for potential movement corridors crossed by roads (measured as current) and road
mortality likelihood
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The habitat suitability models we used to develop
resistance surfaces for the five species concurred with the
habitat preferences documented in the literature. While the
occurrence of ocelots and pumas was best explained by
proximity to protected areas, tiger cats and jaguarundis
were primarily associated with suboptimal habitats, i.e.,
less conserved areas with low habitat connectivity and in
proximity to settlements and urban areas (Giordano 2016).
This can be expected since pumas and ocelots are asso-
ciated with protected areas (Castilho et al. 2015; Massara
et al. 2015) and outcompete and are dominants to the
smaller cats (Oliveira et al. 2010), which therefore tend to
occupy the areas on the margin that are more degraded and
impacted by human activity and disturbance (Françoso
et al. 2015). Also, the lower current densities in road seg-
ments with observed road-kill for jaguarundi suggest that
road mortality for this species may also be associated with
marginal habitats.

We found that road type (roads with three to six lanes)
best explained the occurrence of road-kill. Since informa-
tion on traffic volumes was not available for the road net-
work in Brazil, we assumed that the type of road can be a
proxy of traffic intensity, and our results suggest that traffic
can be an important predictor of felid road-kill. Unexpect-
edly, landscape variables contributed weakly to road mor-
tality models for all species, which is not in line with other
research that showed a stronger association between road-
kill and landscape attributes (Gunson et al. 2011; Bueno
et al. 2013).

Movement Corridors vs. Road Mortality

Movement corridor models are commonly based on resis-
tance surfaces that represent the degree in which the land-
scape facilitates or impedes movement (Chetkiewicz and
Boyce 2009; Abouelezz et al. 2018). Understanding how

Fig. 2 Relationship between current and road mortality likelihood as
shown by GAMs. Y-axis shows the contribution of the cubic regres-
sion spline smoother (the function that links Y to X in the model) to the

fitted values. The smoother is centered around zero. Dashed lines
represent 95% confidence intervals
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individuals move in the landscape can help predict what
landscape conditions will constitute a corridor. However,
individual behavior patterns vary along life cycle: daily
movements can consist of searching for food and shelter,
whereas individuals in the breeding period may greatly
increase movement rates and distances traveled (Powell and
Zielinski 1994; REED 2002). Thus, the behavioral state of
the individuals covered by species occurrence data may
affect the type of habitat selected and ultimately the location
of movement corridors (Zeller et al. 2012, 2014; Abrahms
et al. 2016).

Some research has found relationships between move-
ment corridors and areas of high road mortality when using
data from the breeding period for developing resistance
surfaces. For example, occurrence data collected during the
breeding season of stone marten Martes foina and tawny
owl Strix aluco were used to build movement models to
assess the role of connectivity to explain road-kill (Grilo
et al. 2011; Santos et al. 2013). In contrast, other studies that
did not rely on resistance surfaces developed using data of
breeding periods were unable to find a positive relationship
between movement corridors and road mortality (McClure
and Ament 2014; Boyle et al. 2017; Laliberté and St-
Laurent 2020). Since some studies have shown that road
mortality tends to peak during breeding (Clevenger et al.
2003; Grilo et al. 2009; Barthelmess and Brooks 2010), we
hypothesize that the spatial association among movement
corridors and road-kill occurrence can be expected when
data for the same behavioral state are used in the two pre-
dictive models. Our study used occurrence records to
parameterize resistance surfaces for movement corridor
models. Information on type of behavior was not provided,
and therefore, we were not able to determine if data cor-
responded to breeding or nonbreeding movements. How-
ever, given their independent sources, it is unlikely that they
correspond only to the breeding period, which may explain
the lack of spatial association between our models of
movement corridors and road mortality. The lack of spatial
agreement can also be explained by the association of road
mortality with type of road, while movement corridors are
associated with landscape features.

Implications for Road Management and Research

According to our findings, the complementary use of both
methods may be appropriate. For the felid species we stu-
died, at least the road segments for which the results of the
two methods agreed (~5300 km for all species combined at
95th percentile) should be high-priority candidates for
mitigation. These segments provide valuable information to
enhance habitat connectivity and reduce mortality on roads.
Unfortunately, it is likely not realistic to mitigate all road
segments identified by at least one method (~81,700 km for

all felids at 95th percentile). Therefore, two key strategies
may help prioritize areas to reduce road impacts on the five
felid species in Brazil (van der Grift and Pouwels 2006): (1)
movement corridors bisected by road segments in areas
where felids are threatened by isolation effects should be
considered high risk and mitigation planned accordingly
(Prugh et al. 2008; Zanin et al. 2015; Vilela et al. 2020); and
(2) high road-kill segments coinciding with areas of low
population densities should be considered high risk and
mitigation planned accordingly to protect the viability of
populations (Barbosa et al. 2020).

Despite the scarcity of information about these species’
ecology and populations in Brazil (e.g., Oliveira et al.
2020), recent studies have estimated population densities of
these species (Oliveira et al. 2018), which can provide
important information to support decision about mitigation.
Our work identified the Atlantic Forest as having numerous
road segments with potential movement corridors and high
road-kill locations. The Atlantic Forest is one of the most
threatened biomes in Brazil (Ribeiro et al. 2009) and where
roads are important drivers of deforestation and fragmen-
tation (Freitas et al. 2010). The fragmentation effects of
roads in the Atlantic Forest may be impacting felid con-
servation and therefore require special attention by gov-
ernment agencies responsible for road mitigation.

To reduce road mortality and improve population con-
nectivity, specific mitigation measures designed for felids
need to consider the ecology and behavior of felids, i.e.,
many require vegetative cover for travel. Measures such as
culverts (especially for smaller species), underpasses, and
fences have been proven effective for felids in other parts of
Latin America and elsewhere (Tewes and Hughes 2001;
Abra 2012; Mohammadi et al. 2018; González-Gallina et al.
2018). The amount of cover near entrances and leading to
the crossing structures is important for most felids (Cle-
venger and Waltho 2000, 2005); however, most research on
measures for felids has taken place in North America. There
is a need for more monitoring of felid species’ use of
crossing structures in Latin America to better understand
how design and landscape attributes affect passage rates
(González-Gallina et al. 2018; Pinto et al. 2019).

To gain a better understanding of the role different
behavioral states may play in identification of movement
corridors and high road-kill incidence, we suggest con-
ducting the same analysis with a range of mammal species
that differ in biological and ecological traits during breeding
and nonbreeding periods. This could also be tested with
detailed movement data provided by GPS collars or other
tracking technologies. Models can then incorporate life
history stages that produce different movement patterns,
such as regular daily movements to meet biological needs,
in addition to breeding movements that affect population
persistence and species distribution. We urge researchers in
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Brazil to explore these questions with local-scale felid data,
in addition to researchers elsewhere using global databases
on species movements (Kranstauber et al. 2011). These
studies will shed light on the role of behavioral state on
modeling movement corridors and road-kill locations. We
also suggest that estimates of average daily traffic are
essential to understand the role of traffic on felids mortality
and therefore provide guidance for more effective actions to
minimize mortality.

Our approach can help identify key road segments and
critical areas for mitigation to plan local scale, site-specific
assessments to better inform mitigation planning and
design. Local-scale assessments can help identify existing
below-grade passage structures (culverts and bridges) that
(1) can be retrofitted for wildlife passage (Clevenger and
Huijser 2011; van der Ree et al. 2015) or (2) that are part of
transportation projects in the planning phase, as mitigation
measures are less costly if part of a larger transportation
project, e.g., road expansion or improvements (McGuire
and Morrall 2000).

We also urge greater investments in road ecology
research be made in Brazil to increase the body of scientific
knowledge that is critical for informed decision making in
all stages of road projects (Roberts and Sjölund 2015;
Rytwinski et al. 2015). Thereby, it will be possible not only
to mitigate impacts, but also to prevent new impacts from
poorly conducted Environmental Impact Assessments
(Laurance 2015; Teixeira et al. 2016) and identify trans-
portation infrastructure projects that are high risk to threaten
biodiversity conservation and landscape connectivity
(Laurance 2018; Habel et al. 2019).
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