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LETTER

Mainstreaming ecological connectivity in road environmental impact 
assessments: a long way to go
Larissa Oliveira Gonçalves a, Andreas Kindel a,b, Vinicius Augusto Galvão Bastazini c,d 

and Fernanda Zimmermann Teixeira a,b

aNúcleo de Ecologia de Rodovias e Ferrovias (NERF/UFRGS), Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto 
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University of Évora, Évora, Portugal; dMED - Mediterranean Institute for Agriculture, Environment and Development, & CHANGE–Global 
Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Portugal

ABSTRACT
Road networks affect ecological connectivity, which has implications across different levels of 
biological organization. There are compelling reasons and sufficient approaches and tools to 
mainstream ecological connectivity into environmental impact assessments (EIAs) of road 
projects. In this letter, we discuss ways of overcoming the existing gaps and obstacles in the 
consideration of connectivity loss in EIAs and how to improve mitigation. The selection of 
target species, shifting from single to multispecies approaches, and the evaluation of scale 
optimization are challenges that need to be overcome. We also discuss that the mitigation 
hierarchy, no net loss targets, and the principles of adaptive management should be applied to 
increase the effectiveness of mitigation measures. We propose to increase the cooperation 
between stakeholders and practitioners to enhance co-production and build capacity to 
conduct evidence-based EIAs for assessing ecological connectivity. Finally, we identify direc
tions for future research that can contribute to integrating connectivity into EIA practice.
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Roads are an important source of disturbance in eco
logical systems and are distributed in a large network 
worldwide. One of the major effects of road networks 
is connectivity change, which has implications across 
levels of biological organization, from individuals to 
entire ecosystems. Roads can pose barriers to the 
movements of individuals and genes within and 
between populations, decreasing their access to 
resources and their fitness (Van Der Ree et al. 2015). 
These can affect population abundance and persis
tence, which can ripple through ecological commu
nities, altering patterns of species composition, 
richness and the interactions among them, and ulti
mately affecting ecosystem function (Mestre et al. in 
press; Barrientos et al. 2021). Furthermore, roads could 
act as corridors, for example, by facilitating the coloni
zation of invasive species (Bergamin et al., 2022; Brown 
et al. 2006), also affecting biological organization levels 
and processes, but sometimes with an opposite direc
tion. For simplification, hereafter we will focus on con
nectivity loss, but our concerns and suggestions could 
also be applied to the context of connectivity increase.

There are compelling reasons and sufficient 
approaches and tools to mainstream the evaluation of 
connectivity loss into environmental impact assess
ments (EIAs hereafter) of road projects. Our aim in this 
letter is to highlight the poor consideration of ecological 

connectivity loss in EIAs of road projects and discuss 
ways of overcoming the existing gaps and obstacles to 
their proper consideration, including adequate actions 
to mitigate connectivity loss. We also identify some 
directions for future research that can contribute to 
integrating connectivity into EIA practice. Although 
our concerns stem from our experience in Brazil, we 
think our recommendations can encourage a broader 
audience, not only from Southern-hemisphere countries 
which are experiencing a strong and fast expansion of 
their road networks but also from countries that are 
reviewing their licensing practices or are financing the 
expansion of road networks. Moreover, our recommen
dations are useful both to EIA practitioners and road 
ecology researchers investigating the effects of roads on 
ecological connectivity.

Populations of many species occur in landscapes 
with disjunct habitat patches and their persistence 
may also depend on individual movement between 
patches, but some features of these landscapes – such 
as transportation infrastructure – can hinder such move
ments (Fahrig et al. 2021). Currently, there is a wide 
range of definitions for the concept of connectivity 
that are applied depending on the aims and metrics 
used, from the degree to which a landscape facilitates 
movement, to the functional relationship among the 
spatial distribution of habitat patches to the ease of 
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movement within a landscape (Kindlmann and Burel 
2008). Irrespective of the definition used, movement 
success is central to the concept of connectivity 
(Fahrig et al. 2021). Here, we are considering a broad 
concept of connectivity that includes structural and 
functional connectivity (Kindlmann and Burel 2008).

Landscape-scale effects are regularly neglected in EIAs 
of road projects (Karlson et al. 2014; Jaeger 2015; Freitas 
et al. 2017). Good practice guidelines from regions like 
Europe recommend considering connectivity in EIA (Iuell 
et al. 2003) and the need to maintain ecological corridors 
is usually mentioned. However, connectivity loss, specifi
cally, is only superficially assessed in EIA (Karlson et al. 
2014; Freitas et al. 2017; Karlsson and Bodin 2022), and 
environmental impact statements usually lack proper 
quantitative assessments and predictions of connectivity 
loss (Patterson et al. submitted(a); Jaeger and Torres 
2021). These shortcomings originate even before the 
elaboration of environmental impact statements since 
the scoping practice concentrates on requiring descrip
tions of baseline conditions instead of focusing on impact 
prediction and assessment (Borioni et al. 2017) and the 
estimation of effect sizes. Moreover, in some countries, 
there are no explicit policy requirements and laws to 
include connectivity in the EIA process (Patterson et al. 
submitted(b)), failing in the implementation of connec
tivity conservation plans (Keeley et al. 2019).

Tools to measure connectivity loss and evidence- 
based solutions to mitigate it are widespread in the 
literature. Different types and levels of data can be 
used for connectivity modelling, representing differ
ent ways of how species use and move through the 
landscape: from landcover or habitat suitability maps, 
resistance maps, to source-target patches or network 
nodes with movement rules for individuals. This 
information can come from empirical movement 
data, potential species occurrence maps, or even 
expert opinion (Correa Ayram et al. 2016). Least- 
cost path, circuit theory, graph theory, and indivi
dual-based models are just a few examples of the 
vast amount of approaches and tools available (see 
details in Hilty et al. (2020) and more examples in 
the Connectivity Toolbox at the Conservation 
Corridor website (CCSG 2022)). Some approaches 
have been proposed or applied specifically within 
the context of road routing, such as graph theory, 
which has been used to identify important connec
tions among patches to be avoided by road con
struction (Vasas et al. 2009), for proposing priority 
segments for defragmentation of road networks 
(Gurrutxaga and Saura 2014; Loro et al. 2015; 
Ascensão et al. 2019), or to restore connectivity by 
indicating locations for mitigation measures on roads 
and railways (Clauzel 2017; Tarabon et al. 2022). 
However, these approaches have seldom been 
applied to EIAs worldwide (Patterson et al. 
submitted(b)).

One step in implementing connectivity analyses in 
EIA is the selection of target species or groups as surro
gates for assessing this impact and supporting decision- 
making (Teixeira et al. 2020a). These species or groups 
of species can be studied in more detail and then used 
as indicators to infer how the loss of ecological connec
tivity caused by road projects will affect other species or 
biodiversity values. However, to apply the use of surro
gate species or groups, it is important to test their 
efficiency in representing connectivity patterns for 
other taxa (Brennan et al. 2020). We also echo the 
recommendation to move connectivity analyses from 
single species towards a multispecies approach, as sin
gle-species models might ignore the connectivity needs 
of co-occurring species (Brodie et al. 2015; Brennan et al. 
2020; de Rivera et al. 2022; Tarabon et al. 2022). Previous 
research suggests that multispecies connectivity mod
els should be tailored to ecologically similar and distur
bance-sensitive species to optimize their effectiveness 
(Brodie et al. 2015). Multispecies connectivity is impor
tant to safeguard complex species interaction networks 
and ecosystem functioning and biodiversity mainte
nance. Connectivity loss can have cascading effects on 
ecosystem functioning and biodiversity due to the dis
ruption and/or reorganization of species interactions 
that regulate ecosystem services on which we depend 
upon (Mestre et al. in press). Shifting from single-species 
to multispecies approaches will pose important chal
lenges for practitioners. There is a demand for the 
development of analytical methodologies, capable of 
considering concomitantly the connectivity needs of 
multiple species of concern.

The choice of spatial extent to perform ecological 
connectivity modelling is another challenge, and opti
mizing the scale is a major advance needed (Cumming 
and Tavares 2022). The current practice is the definition 
of arbitrary limits for the study area in which connectiv
ity will be assessed during EIA, without the appraisal of 
the scales at which ecological processes of interest are 
expected to be stronger (Patterson et al. submitted; 
Karlson et al. 2014). Scale should be determined based 
on target groups and the relevance of impacts of the 
road project. Ecological processes related to connectiv
ity could operate on daily movements at a local scale 
(Clauzel et al. 2015) or on migratory movements that 
occur at a regional or global scale (Fullman et al. 2021). 
At local and regional scales, there is evidence for road 
effect zones from 1 to 5 km wide in which reduced 
population abundance was observed for hundreds of 
species of birds and mammals, respectively (Benítez- 
López et al. 2010). However, these scales might not be 
adequate for the assessment of the loss of ecological 
connectivity by road projects, as movement success 
might be affected at larger scales by the implementa
tion of linear infrastructure (see example for modelling 
migratory connectivity (Fullman et al. 2021). From the 
above examples, it is clear that multi-scale analyses, the 
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evaluation of scale optimization (Ashrafzadeh et al. 
2020; Alvarenga et al. 2021), and the definition of EIA 
study areas embracing the underlying ecological pro
cesses of interest should be research priorities.

Connectivity tools are frequently used to find loca
tions for roadkill mitigation; however, contrary to the 
naive and widespread expectation, sites with higher 
mortality are not always located in sites with higher 
landscape connectivity (Cerqueira et al. 2021). These 
two effects (reduced connectivity and increased mortal
ity) should be measured in distinct or associated ways 
(Boyle et al. 2017; Sevigny et al. 2021). Road segments 
with both high expected crossings and high mortality 
risk should be the highest priority for mitigating both 
effects combined, while locations identified only as 
important crossing spots could be used to inform miti
gation of connectivity loss and areas with a high num
ber of fatalities should be used to mitigate road 
mortality. Not only EIAs but the ecology literature also 
confounds multiple mechanisms linked to a single road 
effect, and the proper recognition of the mechanisms 
behind the effect of interest is essential to recommend 
appropriate mitigation measures (Teixeira et al. 2020b).

To mitigate connectivity loss, it is also important to 
act on planning stages prior to the project-based envir
onmental assessment. Strategic Environmental 
Assessments (SEA) could be the framework for this 
task with analyses of ecological connectivity at multi
ple scales and in multiple tiers (Cumming and Tavares 
2022). As even a small and localized project can disrupt 
regional connectivity, the EIA process should consider 
the additive and synergic impacts from multiple activ
ities and stressors through a cumulative effect assess
ment (Harker et al., 2021). If well conducted, SEA could 
rise recommendations at a regional and strategic level, 
allowing the minimization of impacts of development 
projects on biodiversity (Whitehead et al. 2017).

Mitigation planning in EIA should explicitly recog
nize and follow the mitigation hierarchy (Milner- 
Gulland et al. 2021). The mitigation hierarchy frame
work was designed to limit the negative impacts of 
development projects on biodiversity and ecosystem 
services by iteratively addressing four key actions: 
‘avoid’, ‘minimize’, ‘restore’ and ‘offset’. Although mul
tilateral environmental agreements recognize the 
need to maintain and restore habitat connectivity, 
the spatial configuration is hardly considered in the 
mitigation hierarchy (Bergès et al. 2020; Tarabon et al. 
2020). To reduce connectivity loss, each stage of road 
building and operation may be subject to interven
tions applying the mitigation hierarchy framework. 
Locations of high landscape connectivity should be 
avoided during road routing, and then long-span 
bridges and crossing structures should be designed 
for specific targets, combined with other adaptations 

of the road project to minimize connectivity loss. 
Residual connectivity loss detected during road opera
tion should be restored by road retrofitting, for exam
ple, by improving existing wildlife crossings and 
installing new ones aiming to restore movement back 
to pre-road levels. Only after alternatives for these 
three first steps have been exhausted, residual losses 
should be compensated by enhancements in ecologi
cal connectivity off-site, and only as a last resource 
with financial compensation (Villarroya et al., 2014).

No net loss is an increasingly influential target in 
impact assessment, which means that residual losses 
should be counterbalanced (Maron et al. 2018). In 
impact-specific no-net loss, counterfactual scenarios 
describing what would happen to the target outcome 
without the impact and the mitigation/offset need to be 
defined (Maron et al. 2018). In the case of the loss of 
ecological connectivity, it is key to determine what refer
ence comparison for structural or functional connectivity 
is being considered, and what type of ecological out
come should be monitored, such as individual or genetic 
cross-road movements (Maron et al. 2018). An important 
policy gap is the definition of what should be targeted 
and acceptable in no net policies, for example, if the same 
amount of movement should be a target or if an out
come of maintaining population abundance and persis
tence probability can be reached with lower movement 
rates than on a pre-road condition. Future research 
should address and compare scenarios with different 
expected outcomes and assess the consequences of dif
ferent connectivity scenarios, arriving from differing plan
ning frameworks and including feasibility within a road 
network implementation context (Augustynczik, 2021).

An important step in implementing connectivity 
analyses in EIA is testing and validating connectivity 
models to ensure evidence-based mitigation. Model 
validation is an important step to guarantee the use 
of the best decision-making tool and models that are 
not validated and can result in inaccurate manage
ment decisions (Laliberté and St-Laurent 2020). Post- 
construction monitoring is paramount to assess miti
gation effectiveness and inform maintenance and 
adjustments needed in mitigation based on the prin
ciples of adaptive management (van der Grift et al. 
2015) within the current project and also for future 
ones. Validating models of connectivity loss due to 
roads and the effectiveness of mitigation would 
require collecting data of cross-road movement before 
and after road construction and in sites with and with
out the presence of mitigation measures. Crossings 
could be inferred from different types of data sources, 
from individual telemetry, mark-recapture or genetic 
to cameras or track beds (e.g. Zeller et al. 2020). A part 
of the data could be used to train/fit the model and 
another part to evaluate its performance in predicting 
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connectivity. Finally, study designs and models should 
also consider that landscapes are dynamic and move
ment and connectivity patterns are not constant over 
time (Simpkins and Perry 2017; Jennings et al. 2020).

In order to mainstream connectivity analyses and 
mitigation in EIA, we need to intensify the coopera
tion between researchers, EIA practitioners, road con
structors, regulators, and other stakeholders to 
enhance co-production and support and build capa
city to conduct evidence-based project EIAs (Beier 
et al., 2017; Sahraoui et al. 2021). Cooperation is 
essential to accelerate the implementation and adap
tation of connectivity analyses to the complex pro
cess of EIAs at the project level. Improving the 
scoping process might be our best opportunity to 
do that, considering the different phases of the EIA 
process (screening, scoping, studying, evaluating, 
deciding, monitoring and the many steps within and 
between project learning feedbacks). Furthermore, 
connectivity loss can also be mainstreamed in EIA by 
improved requirements and enforcement from differ
ent state and private agencies financing road building 
and network expansion.

Although connectivity research has advanced tre
mendously in the last decades, there are still major 
improvements needed in relation to the proper consid
eration of the loss of ecological connectivity in EIA. We 
highlight here some of the reasons why this impact 
should be integrated in EIA of road projects since 
roads can pose a barrier or filter to the movements of 
animals which have implications across levels of biolo
gical organization. We discuss some issues and 
approaches that need to be considered when main
streaming connectivity into EIAs, such as a better choice 
of the spatial extent to be studied, the selection of 
target species or groups, the inclusion of model valida
tion, the adoption of the mitigation hierarchy and of the 
principles of adaptive management. We hope that this 
letter can contribute to the discussion on how connec
tivity loss can be better assessed and mitigated within 
the road infrastructure context.
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